Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 May 11;282(19):14413-20. Epub 2007 Mar 15.

Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer.

Author information

  • 1Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.


Heparan sulfate (HS) glycosaminoglycans are the oligosaccharide chains of heparan sulfate proteoglycans. The sulfation of HS glycosaminoglycan residues is required for its interaction with various heparin-binding growth factors to promote their biological activities to activate their high affinity receptor tyrosine kinases. We have identified HS glycosaminoglycan-6-O-endosulfatase HSulf-1 as a down-regulated gene in ovarian, breast, and several other cancer cell lines. Here we have shown that HSulf-1 inhibits autocrine activation of the EGFR-ERK (epidermal growth factor receptor-extracellular signal-regulated kinase) pathway induced by serum withdrawal in MDA-MB-468 breast cancer cells. Short hairpin RNA-mediated down-regulation of HSulf-1 in HSulf-1 clonal lines of MDA-MB-468 led to a significant increase in autocrine activation of ERK compared with vector only control. The autocrine signaling was also inhibited with neutralization antibodies against amphiregulin and HB-EGF, the heparin-binding growth factor family of the EGF superfamily. Furthermore, HSulf-1-mediated inhibition of autocrine signaling was associated with reduced cyclin D1 levels, leading to decreased S phase fraction and increased G(2)-M fraction, as well as increased cell death. Finally, evaluation of HSulf-1 expression levels in primary invasive breast tumors by RNA in situ hybridization indicated that HSulf-1 is down-regulated in the majority (60%) of tumors, with a predominant association with lobular histology. These data suggest a potential role of HSulf-1 down-regulation in mammary carcinogenesis.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk