Dislocation glasses: aging during relaxation and coarsening

Phys Rev Lett. 2007 Feb 16;98(7):075701. doi: 10.1103/PhysRevLett.98.075701. Epub 2007 Feb 14.

Abstract

The dynamics of dislocations is reported to exhibit a range of glassy properties. We study numerically various versions of 2D edge dislocation systems, in the absence of externally applied stress. Two types of glassy behavior are identified (i) dislocations gliding along randomly placed, but fixed, axes exhibit relaxation to their spatially disordered stable state; (ii) if both climb and annihilation are allowed, irregular cellular structures can form on a growing length scale before all dislocations annihilate. In all cases both the correlation function and the diffusion coefficient are found to exhibit aging. Relaxation in case (i) is a slow power law, furthermore, in the transient process (ii) the dynamical exponent z approximately 6, i.e., the cellular structure coarsens relatively slowly.