Display Settings:

Format

Send to:

Choose Destination
Ultramicroscopy. 2007 Aug;107(8):674-84. Epub 2007 Jan 28.

Direct electron imaging in electron microscopy with monolithic active pixel sensors.

Author information

  • 1Brookhaven National Laboratory, Upton, NY 11973, USA. deptuch@ieee.org

Abstract

A new imaging device for dynamic electron microscopy is in great demand. The detector should provide the experimenter with images having sufficient spatial resolution at high speed. Immunity to radiation damage, accumulated during exposures, is critical. Photographic film, a traditional medium, is not adequate for studies that require large volumes of data or rapid recording and charge coupled device (CCD) cameras have limited resolution, due to phosphor screen coupling. CCD chips are not suitable for direct recording due to their extreme sensitivity to radiation damage. This paper discusses characterization of monolithic active pixel sensors (MAPS) in a scanning electron microscope (SEM) as well as in a transmission electron microscope (TEM). The tested devices were two versions of the MIMOSA V (MV) chip. This 1M pixel device features pixel size of 17 x 17 microm(2) and was designed in a 0.6 microm CMOS process. The active layer for detection is a thin (less than 20 microm) epitaxial layer, limiting the broadening of the electron beam. The first version of the detector was a standard imager with electronics, passivation and interconnection layers on top of the active region; the second one was bottom-thinned, reaching the epitaxial layer from the bottom. The electron energies used range from a few keV to 30 keV for SEM and from 40 to 400 keV for TEM. Deterioration of the image resolution due to backscattering was quantified for different energies and both detector versions.

PMID:
17346890
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk