Send to:

Choose Destination
See comment in PubMed Commons below
Pain. 2007 Nov;132(1-2):74-81. Epub 2007 Mar 7.

Hydrogen sulfide as a novel nociceptive messenger.

Author information

  • 1Division of Physiology and Pathophysiology, Department of Pharmacy, School of Pharmacy, Kinki University, Higashi-Osaka 577-8502, Japan.


Hydrogen sulfide (H(2)S), an endogenous gasotransmitter, modulates various biological events such as inflammation in the mammalian body. The present study investigated possible involvement of H(2)S in peripheral nociceptive processing. Intraplantar ( administration of NaHS, a H(2)S donor, produced prompt hyperalgesia in rats, accompanied by expression of Fos in the spinal dorsal horn. The H(2)S-evoked hyperalgesia was blocked by 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), an oxidizing agent, or ethosuximide and mibefradil, T-type Ca(2+) channel inhibitors. L-Cysteine, an endogenous source for H(2)S, given, also elicited hyperalgesia, an effect being abolished by DL-propargylglycine (PPG) and beta-cyanoalanine (BCA), inhibitors of cystathionine-gamma-lyase, a H(2)S synthesizing enzyme. PPG and/or BCA partially inhibited the hyperalgesia induced by lipopolysaccharide, an effect being reversed by NaHS. In the patch-clamp study using undifferentiated NG108-15 cells that express T-type, but not other types, of Ca(2+) channels, NaHS enhanced the currents through the T-type channels, an effect being blocked by DTNB. Thus, H(2)S appears to function as a novel nociceptive messenger through sensitization of T-type Ca(2+) channels in the peripheral tissues, particularly during inflammation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk