Send to:

Choose Destination
See comment in PubMed Commons below
Ann N Y Acad Sci. 2007 May;1104:310-23. Epub 2007 Mar 7.

Reward prediction error computation in the pedunculopontine tegmental nucleus neurons.

Author information

  • 1Graduate School of Frontier Biosciences, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan.


In this article, we address the role of neuronal activity in the pathways of the brainstem-midbrain circuit in reward and the basis for believing that this circuit provides advantages over previous reinforcement learning theory. Several lines of evidence support the reward-based learning theory proposing that midbrain dopamine (DA) neurons send a teaching signal (the reward prediction error signal) to control synaptic plasticity of the projection area. However, the underlying mechanism of where and how the reward prediction error signal is computed still remains unclear. Since the pedunculopontine tegmental nucleus (PPTN) in the brainstem is one of the strongest excitatory input sources to DA neurons, we hypothesized that the PPTN may play an important role in activating DA neurons and reinforcement learning by relaying necessary signals for reward prediction error computation to DA neurons. To investigate the involvement of the PPTN neurons in computation of reward prediction error, we used a visually guided saccade task (VGST) during recording of neuronal activity in monkeys. Here, we predict that PPTN neurons may relay the excitatory component of tonic reward prediction and phasic primary reward signals, and derive a new computational theory of the reward prediction error in DA neurons.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk