Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Nutr Soc. 2007 Feb;66(1):16-24.

Nutritional interventions in critical illness.

Author information

  • 1Department of Human Nutrition, The Royal London Hospital, Whitechapel, London E1 1BB, UK. j.powell_tuck@qmul.ac.uk

Abstract

The metabolism of critical illness is characterised by a combination of starvation and stress. There is increased production of cortisol, catecholamines, glucagon and growth hormone and increased insulin-like growth factor-binding protein-1. Phagocytic, epithelial and endothelial cells elaborate reactive oxygen and nitrogen species, chemokines, pro-inflammatory cytokines and lipid mediators, and antioxidant depletion ensues. There is hyperglycaemia, hyperinsulinaemia, hyperlactataemia, increased gluconeogenesis and decreased glycogen production. Insulin resistance, particularly in relation to the liver, is marked. The purpose of nutritional support is primarily to save life and secondarily to speed recovery by reducing neuropathy and maintaining muscle mass and function. There is debate about the optimal timing of nutritional support for the patient in the intensive care unit. It is generally agreed that the enteral route is preferable if possible, but the dangers of the parenteral route, a route of feeding that remains important in the context of critical illness, may have been over-emphasised. Control of hyperglycaemia is beneficial, and avoidance of overfeeding is emphasised. Growth hormone is harmful. The refeeding syndrome needs to be considered, although it has been little studied in the context of critical illness. Achieving energy balance may not be necessary in the early stages of critical illness, particularly in patients who are overweight or obese. Protein turnover is increased and N balance is often negative in the face of normal nutrient intake; optimal N intakes are the subject of some debate. Supplementation of particular amino acids able to support or regulate the immune response, such as glutamine, may have a role not only for their potential metabolic effect but also for their potential antioxidant role. Doubt remains in relation to arginine supplementation. High-dose mineral and vitamin antioxidant therapy may have a place.

PMID:
17343768
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Write to the Help Desk