Display Settings:


Send to:

Choose Destination
J Comput Chem. 2007 Aug;28(11):1834-47.

Finding the transition state without initial guess: the growing string method for Newton trajectory to isomerization and enantiomerization reaction of alanine dipeptide and poly(15)alanine.

Author information

  • Mathematical Institute, University of Leipzig, Augustus-Platz, D-04109 Leipzig, Germany. quapp@rz.uni-leipzig.de


We report a new, high-dimensional application of a method for finding a transition state (TS) between a reactant and a product on the potential energy surface: the search of a growing string along a reaction path defined by any Newton trajectory in combination with the Berny method (Quapp, J Chem Phys (2005), 122, 174106; we have provided this algorithm on a web page). Two given minima are connected by a one-dimensional, but usually curvilinear reaction coordinate. It leads to the TS region. The application of the method to alanine dipeptide finds the TS of the isomerisation C(7 ax) --> C(5), some TSs of the enantiomerisation of C(7 ax) from L-form to quasi-D-form, and it finds the TS region of a transition of a partly unfolded, bent structure which turns back into a mainly alpha-helix in the Ac(Ala)(15)NHMe polyalanine (all at the quantum mechanical level B3LYP/6-31G: the growing string calculation is interfaced with the Gaussian03 package). The formation or dissolvation of some alpha- or 3(10)-hydrogen bonds of the helix are discussed along the TS pathway, as well as the case of an enantiomer at the central residue of the helix.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk