Send to:

Choose Destination
See comment in PubMed Commons below
Exp Mol Med. 2007 Feb 28;39(1):74-83.

Tyrosine nitration site specificity identified by LC/MS in nitrite-modified collagen type IV.

Author information

  • 1Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.


Non-enzymatic nitrite induced collagen cross-linking results in changes reminiscent of age-related damage and parallels the well-known model system, non-enzymatic glycation. We have recently observed that nitrite modification of basement membrane proteins can induce deleterious effects on overlying retinal pigment epithelial cells in studies relevant to age-related macular degeneration. The present work was undertaken in order to confirm 3-nitro-tyrosine (3-NT) as a product of the reaction and to identify the site specificity of nitration in collagen IV, a major component of basement membranes. Human collagen type IV was modified via incubation with 200 mM NaNO(2) (pH=7.38) for one week at 37(o)C. The modified protein was prepared in 2 different ways, including acid hydrolysis and trypsin digestion for site specificity determination. The samples were analyzed by LC/MS using a C(12) RP column. Site specificity was determined from tandem MS/MS data utilizing TurboSEQUEST software and the Swiss-Prot sequence database. 3-NT was detected in protein digests and acid hydrolysates of nitrite modified collagen IV. Positive identification with standard 3-NT was confirmed by identical R(t), lambda(max)=279 nm and 355 nm, and m/z=227. Analyses of tryptic digests identified four sites of tyrosine nitration, alpha1(IV)Y348, alpha1(IV)Y534, alpha2(IV)Y327, and alpha2(IV)Y1081. These sites are located in the triple-helical region of the protein and provide clues regarding potential sites for nitrite modification in collagen type IV.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for Korean Society for Biochemistry and Molecular Biology
    Loading ...
    Write to the Help Desk