Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2007 May 1;23(9):1061-7. Epub 2007 Mar 1.

CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes.

Author information

  • 1UC Davis Genome Center, University of California Davis, Davis, CA 95616, USA.

Abstract

MOTIVATION:

The numbers of finished and ongoing genome projects are increasing at a rapid rate, and providing the catalog of genes for these new genomes is a key challenge. Obtaining a set of well-characterized genes is a basic requirement in the initial steps of any genome annotation process. An accurate set of genes is needed in order to learn about species-specific properties, to train gene-finding programs, and to validate automatic predictions. Unfortunately, many new genome projects lack comprehensive experimental data to derive a reliable initial set of genes.

RESULTS:

In this study, we report a computational method, CEGMA (Core Eukaryotic Genes Mapping Approach), for building a highly reliable set of gene annotations in the absence of experimental data. We define a set of conserved protein families that occur in a wide range of eukaryotes, and present a mapping procedure that accurately identifies their exon-intron structures in a novel genomic sequence. CEGMA includes the use of profile-hidden Markov models to ensure the reliability of the gene structures. Our procedure allows one to build an initial set of reliable gene annotations in potentially any eukaryotic genome, even those in draft stages.

AVAILABILITY:

Software and data sets are available online at http://korflab.ucdavis.edu/Datasets.

PMID:
17332020
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk