Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Diabetes Care. 2007 Mar;30(3):622-8.

Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002.

Author information

  • 1Department of Preventive Medicine, School of Medicine, Kyungpook National University, 101 Dongin-dong, Jung-gu, Daegu, Korea 700-422. lee_dh@knu.ac.kr

Abstract

OBJECTIVE:

We reported strong relations between serum concentrations of persistent organic pollutants (POPs), especially organochlorine (OC) pesticides or nondioxin-like polychlorinated biphenyls (PCBs), and prevalence of diabetes in a U.S population with background exposure to POPs. Here, we investigated POPs and insulin resistance, a frequent pathogenic precursor of type 2 diabetes.

RESEARCH DESIGN AND METHODS:

Serum POPs and homeostasis model assessment of insulin resistance (HOMA-IR) were investigated cross-sectionally in 749 nondiabetic participants aged > or = 20 years. Nineteen POPs in five subclasses were selected, detectable in > or = 60% of participants.

RESULTS:

Among subclasses, OC pesticides were most strongly associated with HOMA-IR. Adjusted geometric means of HOMA were 3.27, 3.36, 3.48, and 3.85 (P for trend <0.01) across quartiles of OC pesticides. The relationship strengthened with increasing HOMA-IR percentile: adjusted odds ratios comparing the highest versus lowest POPs quartile were 1.8 for being > or = 50th percentile of HOMA-IR, 4.4 for being > or = 75th percentile, and 7.5 for being > or = 90th percentile. Associations with elevated HOMA-IR appeared to be specific to oxychlordane and trans-nonachlor but also were found for two nondioxin-like PCBs. No HOMA-IR associations were seen in the other three POP subclasses. The association between OC pesticides and HOMA-IR tended to strengthen as waist circumference increased, with no apparent association in the lowest quartile of OC pesticide concentrations.

CONCLUSIONS:

These findings, coupled with those concerning diabetes prevalence, suggest that OC pesticides and nondioxin-like PCBs may be associated with type 2 diabetes risk by increasing insulin resistance, and POPs may interact with obesity to increase the risk of type 2 diabetes.

PMID:
17327331
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk