Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Planta. 2007 Jul;226(2):381-94. Epub 2007 Feb 24.

Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters.

Author information

  • 1Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO 63132, USA. ak533@york.ac.uk

Abstract

The surface of plants is covered by cuticular wax, which contains a mixture of very long-chain fatty acid (VLCFA) derivatives. This wax surface provides a hydrophobic barrier which reduces non-stomatal water loss. One component of the cuticular wax is the alkyl esters, which typically contain a VLCFA esterified to an alcohol of a similar length. As part of an EST project, we recently identified an acyltransferase with 19% sequence identity (amino acid) to a bacterial 'bifunctional' wax-ester synthase/diacylglycerol acyltransferase (WS/DGAT). Northern analysis revealed that this petunia homologue was expressed predominantly within the petals. The cDNA encoding the WS/DGAT homologue was introduced into a yeast strain deficient in triacylglycerol biosynthesis. The expressed protein failed to restore triacylglycerol biosynthesis, indicating that it lacked DGAT activity. However, isoamyl esters of fatty acids were detected, which suggested that the petunia cDNA encoded a wax-synthase. Waxes were extracted from petunia petals and leaves. The petal wax extract was rich in VLCFA esters of methyl, isoamyl, and short-to-medium straight chain alcohols (C4-C12). These low molecular weight wax-esters were not present in leaf wax. In-vitro enzymes assays were performed using the heterologously expressed protein and 14C-labelled substrates. The expressed protein was membrane bound, and displayed a preference for medium chain alcohols and saturated very long-chain acyl-CoAs. In fact, the activity would be sufficient to produce most of the low molecular wax-esters present in petals, with methyl-esters being the exception. This work is the first characterization of a eukaryotic protein from the WS/DGAT family.

PMID:
17323080
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk