Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Pharm. 2007 Jun 29;338(1-2):276-83. Epub 2007 Feb 2.

Controlled protein release from electrospun biodegradable fiber mesh composed of poly(epsilon-caprolactone) and poly(ethylene oxide).

Author information

  • 1Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea.

Abstract

A blend mixture of poly(epsilon-caprolactone) (PCL) and poly(ethylene oxide) (PEO) was electrospun to produce fibrous meshes that could release a protein drug in a controlled manner. Various biodegradable polymers, such as poly(l-lactic acid) (PLLA), poly(epsilon-caprolactone) (PCL), and poly(d,l-lactic-co-glycolic acid) (PLGA) were dissolved, along with PEO and lysozyme, in a mixture of chloroform and dimethylsulfoxide (DMSO). The mixture was electrospun to produce lysozyme loaded fibrous meshes. Among the polymers, the PCL/PEO blend meshes showed good morphological stability upon incubation in the buffer solution, resulting in controlled release of lysozyme over an extended period with reduced initial bursts. With varying the PCL/PEO blending ratio, the release rate of lysozyme from the corresponding meshes could be readily modulated. The lysozyme release was facilitated by increasing the amount of PEO, indicating that entrapped lysozyme was mainly released out by controlled dissolution of PEO from the blend meshes. Lysozyme released from the electrospun fibers retained sufficient catalytic activity.

PMID:
17321084
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk