Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2007 Mar;7(3):614-9. Epub 2007 Feb 23.

Translocation of C60 and its derivatives across a lipid bilayer.

Author information

  • 1Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, USA. rqiao@ces.clemson.edu

Abstract

Obtaining an understanding, at the atomic level, of the interaction of nanomaterials with biological systems has recently become an issue of great research interest. Here we report on the molecular dynamics study of the translocation of fullerene C60 and its derivative C60(OH)20 across a model cell membrane (dipalmitoylphosphatidylcholine or DPPC bilayer). The simulation results indicate that, although a pristine C60 molecule can readily "jump" into the bilayer and translocate the membrane within a few milliseconds, the C60(OH)20 molecule can barely penetrate the bilayer. Indeed, the mean translocation time via diffusion for the C60(OH)20 molecule is several orders of magnitude longer than for the former. It was also determined that the two different forms of fullerenes, when adsorbed into/onto the bilayer, affected the membrane structure differently. This study offers a mechanistic explanation of that difference and for the reduced acute toxicity of functionalized fullerenes.

PMID:
17316055
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk