Format

Send to:

Choose Destination
See comment in PubMed Commons below
Heredity (Edinb). 2007 May;98(5):329-36. Epub 2007 Feb 21.

Inbreeding and extreme outbreeding cause sex differences in immune defence and life history traits in Epirrita autumnata.

Author information

  • 1Department of Biology, Section of Ecology, University of Turku, Turku, Finland. marrant@cc.jyu.fi

Abstract

Empirical studies in vertebrates support the hypothesis that inbreeding reduces resistance against parasites and pathogens. However, studies in insects have not found any evidence that inbreeding compromises immune defence. Here we tested whether one generation of brother-sister mating or extreme outbreeding (mating between two populations) have an effect on innate immunity and life history traits in the autumnal moth, Epirrita autumnata. We show that the effect of inbreeding on immune response differed between the sexes: whereas in females, inbreeding significantly reduced encapsulation response against nylon monofilament ability, it did not have a significant effect on male immune response. There were also differences in the correlation of the immune response with other traits: in females increased immune response was positively correlated with large size, whereas in males immune response increased with a reduction in development time. Immune response differed significantly among families in males but not in females, both for the inbreeding and extreme outbreeding experiments. In conjunction with the observed immune responses to inbreeding, these data suggest that in males genetic variation for immune response is largely additive or non-directional with respect to dominance, whereas in females variation is much reduced and consists of directional dominance variance. Further, we show that encapsulation response against nylon monofilament is associated with the resistance against real pathogens suggesting that this widely used method to measure the strength of immune defence in insects is also a biologically relevant method.

PMID:
17314921
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk