Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2007 Mar 15;402(3):591-600.

Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c.

Author information

  • 1Department of Adipocyte Signalling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.


Dietary PUFAs (polyunsaturated fatty acids) co-ordinately suppress transcription of a group of hepatic genes encoding glycolytic and lipogenic enzymes. Suppression of Fasn (fatty acid synthase) transcription involves two PUFA-responsive regions, but the majority of PUFA sensitivity maps to a region within the proximal promoter containing binding sites for NF-Y (nuclear factor-Y), Sp1 (stimulatory protein 1), SREBP (sterol-regulatory-elementbinding protein), and USF (upstream stimulatory factor). Promoter activation assays indicate that altered NF-Y is the key component in regulation of Fasn promoter activity by PUFA. Using electrophoretic mobility-shift assay and chromatin immunoprecipitation analysis, we demonstrate for the first time that PUFAs decrease in vivo binding of NF-Y and SREBP-1c to the proximal promoter of the hepatic Fasn gene and the promoters of three additional genes, spot 14, stearoyl-CoA desaturase and farnesyl diphosphate synthase that are also down-regulated by PUFA. The comparable 50% decrease in NF-Y and SREBP-1c binding to the promoters of the respective PUFA-sensitive genes occurred despite no change in nuclear NF-Y content and a 4-fold decrease in SREBP-1c. Together, these findings support a mechanism whereby PUFA reciprocally regulates the binding of NF-Y and SREBP-1c to a subset of genes which share similar contiguous arrangements of sterol regulatory elements and NF-Y response elements within their promoters. PUFA-dependent regulation of SREBP-1c and NF-Y binding to this unique configuration of response elements may represent a nutrient-sensitive motif through which PUFA selectively and co-ordinately targets subsets of hepatic genes involved in lipid metabolism.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk