Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2007 Mar 8;111(9):2313-21. Epub 2007 Feb 13.

Conformational behavior of basic monomeric building units of glycosaminoglycans: isolated systems and solvent effect.

Author information

  • 1Department of Pharmaceutical Chemistry, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovakia.


Our work reports in detail the results of systematic large-scale theoretical investigations of the glycosaminoglycan building units 1-OMe DeltaIdoA-2SNa2 (1; 2H1 and 1H2 forms), 1-OMe GlcN-S6SNa2 (2), 1,4-DiOMe GlcNa (3), 1,4-DiOMe GlcN-S3S6SNa3 (4), 1,4-DiOMe IdoA-2SNa2 (5; 4C1, 1C4, and 2So conformations), and 1,4-DiOMe GlcN-S6SNa2 (6) at the BP86/TZ2P level of the density functional theory. The optimized geometries indicate that the most stable structure of these monomeric units in the neutral state is stabilized via "multifurcated" sodium bonds. The equilibrium structure of the biologically active anionic forms of the glycosaminoglycans studied changed considerably in a water solution. The computed interaction energies, DeltaE, of sodium coordinated systems 1-6 are negative and span a rather broad energy interval (from -130 to -590 kcal mol-1). Computations that include the effect of solvation indicated that in water the relative stability of Na+...ligand ionic bonds is considerably diminished. The computed interaction energy in water is small (from -20 to -53 kcal mol-1) and negative, that is, stabilizing.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk