Display Settings:

Format

Send to:

Choose Destination
Circ Res. 2007 Mar 16;100(5):686-92. Epub 2007 Feb 9.

Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels.

Author information

  • 1Department of Physiology I, University of Tuebingen, Gmelinstrasse 5, D-72076 Tuebingen, Germany. guiscard.seebohm@gmx.de

Abstract

Stress-dependent regulation of cardiac action potential duration is mediated by the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. It is accompanied by an increased magnitude of the slow outward potassium ion current, I(Ks). KCNQ1 and KCNE1 subunits coassemble to form the I(Ks) channel. Mutations in either subunit cause long QT syndrome, an inherited cardiac arrhythmia associated with an increased risk of sudden cardiac death. Here we demonstrate that exocytosis of KCNQ1 proteins to the plasma membrane requires the small GTPase RAB11, whereas endocytosis is dependent on RAB5. We further demonstrate that RAB-dependent KCNQ1/KCNE1 exocytosis is enhanced by the serum- and glucocorticoid-inducible kinase 1, and requires phosphorylation and activation of phosphoinositide 3-phosphate 5-kinase and the generation of PI(3,5)P(2). Identification of KCNQ1/KCNE1 recycling and its modulation by serum- and glucocorticoid-inducible kinase 1-phosphoinositide 3-phosphate 5-kinase -PI(3,5)P(2) provides a mechanistic insight into stress-induced acceleration of cardiac repolarization.

PMID:
17293474
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk