Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2007 Apr 1;35(2):478-87. Epub 2006 Dec 23.

Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: tract-based spatial statistics study of aging.

Author information

  • 1Research Imaging Center, University of Texas Health Science Center at San Antonio, Research Imaging Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA. kochunov@uthscsa.edu

Abstract

White matter (WM) fractional anisotropy (FA) is thought to be related to WM integrity and decline in FA is often used as an index of decreasing WM health. However, the relationship of FA to other structural indices of cerebral health has not been well studied. We hypothesized that the decline in WM health will be associated with changes in several other indices of cerebral health. In this manuscript we studied the correlation between whole-brain/hemispheric/corpus callosum FA and gray matter (GM) thickness, sulcal span, and the volume of T2-hyperintense WM in a group of 31 healthy aging individuals (12 males/19 females) aged 57-82 years old. Individual subjects' FA measures were calculated from diffusion tracing imaging (DTI) data using tract-based spatial statistics--an approach specifically designed and validated for voxel-wise multi-subject FA analysis. Age-controlled correlation analysis showed that whole-brain average FA values were significantly and positively correlated with the subject's average GM thickness and negatively correlated with hyperintense WM volume. Intra-hemispheric correlations between FA and other measures of cerebral health had generally greater effect sizes than inter-hemispheric correction, with correlation between left FA and left GM thickness being the most significant (r=0.6, p<0.01). Regional analysis of FA values showed that late-myelinating fiber tracts of the genu of corpus callosum had higher association with other cerebral health indices. These data are consistent with the hypothesis that late-myelinating regions of the brain bear the brunt of age-related degenerative changes.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk