Format

Send to:

Choose Destination
See comment in PubMed Commons below
Diabetes. 1992 Jan;41(1):26-9.

Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine.

Author information

  • 1Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461.

Abstract

Aminoguanidine-HCl inhibits the formation of advanced glycosylation end products (AGEs) in vitro and in vivo, but the mechanism by which this occurs has not been determined. Aminoguanidine inhibited glucose-derived AGE formation on RNase A by 67-85% at aminoguanidine-glucose molar ratios of 1:5 to 1:50 without affecting the concentration of Amadori products. Fast-atom-bombardment mass spectrometry of RNase peptides incubated with glucose alone or with glucose plus aminoguanidine showed that aminoguanidine inhibited the formation of AGEs without forming an adduct with glycosylated peptide. These data suggest that the primary mechanism of aminoguanidine action is reaction with Amadori-derived fragmentation products in solution. These findings are relevant to the potential clinical use of aminoguanidine in the prevention of diabetic complications.

PMID:
1727735
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk