Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2007 Feb 27;46(8):2100-10. Epub 2007 Feb 3.

Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails.

Author information

  • 1School of Life Sciences, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.

Abstract

Human brahma-related gene 1 (Brg1) is a core protein in human SWI/SNF chromatin-remodeling complex which regulates gene expression. Brg1 contains a bromodomain that has been shown to anchor the entire complex to promoter nucleosomes by interacting with histones that are acetylated at specific lysine residues. The Brg1 bromodomain belongs to an important subclass of the bromodomain family for which no structural information is known. Here we report the solution structure of the Brg1 bromodomain determined by NMR. The Brg1 bromodomain conserves the left-handed, four-helix bundle topology found in other bromodomain structures. However, the alphaZ helix of Brg1 bromodomain is about 4 residues shorter relative to previously published bromodomain structures. Using NMR perturbation studies, we demonstrate the Brg1 bromodomain binds acetyllysine in the context of histone tails, with no comparable affinity for unacetylated peptides. The estimated dissociation constants (KD) for acetylated histone peptides H4-AcK8 and H4-AcK12 are 4.0 and 3.6 mM, respectively. In this study the dominant substrate was H3-AcK14 (KD approximately 1.2 mM). Mutagenesis analysis reveals several residues important for the binding specificity. Using molecular dynamics simulations, we present a model of the Brg1 bromodomain in complex with H3-AcK14 and discuss the potential interactions which provide the selectivity of the Brg1 bromodomain for histone H3-AcK14.

PMID:
17274598
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk