Format

Send to

Choose Destination
See comment in PubMed Commons below
J Reprod Dev. 2007 Jun;53(3):499-508. Epub 2007 Feb 2.

Reproductive phenotypes in mice with targeted disruption of the 20alpha-hydroxysteroid dehydrogenase gene.

Author information

  • 1Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan.

Abstract

In the corpus luteum of rats and mice, 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) catalyzes the conversion of progesterone to a biologically inactive metabolite, 20alpha-dihydroprogesterone (20alpha-OHP). The reduction of progesterone by 20alpha-HSD is believed to be important for functional luteolysis in these rodent species. In addition to the corpus luteum, expression of 20alpha-HSD has been demonstrated in tissues such as the placenta, endometrial epithelia, and fetal skin, although the roles it plays in the latter tissues remain to be determined. To determine the contribution of 20alpha-HSD to functional luteolysis and to the rodent reproductive system more generally, we generated a strain of mice with targeted disruption of the 20alpha-HSD gene. In the 20alpha-HSD-/- mice we obtained, which lacked the genomic region essential for catalytic reaction, neither 20alpha-HSD activity in the corpus luteum nor an increase in the serum concentrations of 20alpha-OHP during pseudopregnancy or pregnancy was detected. The durations of the estrous cycle, pseudopregnancy, and pregnancy were significantly prolonged in the 20alpha-HSD-/- mice, although the serum progesterone levels decreased to levels low enough for delivery of pups at term of pregnancy. In addition, the number of pups, especially live pups, was markedly decreased in the 20alpha-HSD-/- mice. These findings suggest that the role of 20alpha-HSD in functional luteolysis is relatively minor but that it is involved in the survival of newborn mice.

PMID:
17272929
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk