Display Settings:

Format

Send to:

Choose Destination
J Neurochem. 2007 Feb;100(3):727-35.

Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones.

Author information

  • 1Carl-Ludwig-Institut für Physiologie, Abteilung Neurophysiologie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany. hartmut.schmidt@medizin.uni-leipzig.de

Abstract

The Ca(2+) -binding protein (CaBP) parvalbumin (PV) is strongly expressed in cerebellar Purkinje neurones (PNs). It is considered a pure Ca(2+) buffer, lacking any Ca(2+) sensor function. Consistent with this notion, no PV ligand was found in dendrites of PNs. Recently, however, we observed for a related CaBP that ligand-targeting differs substantially between dendrites and axons. Thus, here we quantified the diffusion of dye-labelled PV in axons, somata and nuclei of PNs by two-photon fluorescence recovery after photobleaching (FRAP). In all three compartments the fluorescence rapidly returned to baseline, indicating that no large or immobile PV ligand was present. In the axon, FRAP was well described by a one-dimensional diffusion equation and a diffusion coefficient (D) of 12 (IQR 6-20) micro m(2)/s. For the soma and nucleus a three-dimensional model yielded similar D values. The diffusional mobility in these compartments was approximately 3 times smaller than in dendrites. Based on control experiments with fluorescein dextrans, we attributed this reduced mobility of PV to different cytoplasmic properties rather than to specific PV interactions in these compartments. Our findings support the notion that PV functions as a pure Ca(2+) buffer and will aid simulations of neuronal Ca(2+) signalling.

PMID:
17263794
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk