Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
PPAR Res. 2006;2006:27489.

Resolving the Two "Bony" Faces of PPAR-gamma.

Author information

  • 1Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, 629 Jack Stephens Drive, Little Rock, AR 72205, USA.

Abstract

Bone loss with aging results from attenuated and unbalanced bone turnover that has been associated with a decreased number of bone forming osteoblasts, an increased number of bone resorbing osteoclasts, and an increased number of adipocytes (fat cells) in the bone marrow. Osteoblasts and adipocytes are derived from marrow mesenchymal stroma/stem cells (MSC). The milieu of intracellular and extracellular signals that controls MSC lineage allocation is diverse. The adipocyte-specific transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) acts as a critical positive regulator of marrow adipocyte formation and as a negative regulator of osteoblast development. In vivo, increased PPAR-gamma activity leads to bone loss, similar to the bone loss observed with aging, whereas decreased PPAR-gamma activity results in increased bone mass. Emerging evidence suggests that the pro-adipocytic and the anti-osteoblastic properties of PPAR-gamma are ligand-selective, suggesting the existence of multiple mechanisms by which PPAR-gamma controls bone mass and fat mass in bone.

PMID:
17259664
[PubMed]
PMCID:
PMC1679961
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1
Figure 2
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Write to the Help Desk