Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Bacteriol. 2007 Apr;189(7):2787-92. Epub 2007 Jan 26.

Identification of the initial steps in D-lysine catabolism in Pseudomonas putida.

Author information

  • 1Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Calle Profesor Albareda 1, E-18008 Granada, Spain.

Abstract

Pseudomonas putida uses l-lysine as the sole carbon and nitrogen source which preferentially requires its metabolism through two parallel pathways. In one of the pathways delta-aminovalerate is the key metabolite, whereas in the other l-lysine is racemized to d-lysine, and l-pipecolate and alpha-aminoadipate are the key metabolites. All the genes and enzymes involved in the d-lysine pathway, except for those involved in the conversion of d-lysine into Delta(1)-piperideine-2-carboxylate, have been identified previously (30). In this study we report that the conversion of d-lysine into Delta(1)-piperideine-2-carboxylate can be mediated by a d-lysine aminotransferase (PP3590) and a d-lysine dehydrogenase (PP3596). From a physiological point of view PP3596 plays a major role in the catabolism of d-lysine since its inactivation leads to a marked reduction in the growth rate with l- or d-lysine as the sole carbon and nitrogen source, whereas inactivation of PP3590 leads only to slowed growth. The gene encoding PP3590, called here amaC, forms an operon with dpkA, the gene encoding the enzyme involved in conversion of Delta(1)-piperideine-2-carboxylate to l-pipecolate in the d-lysine catabolic pathway. The gene encoding PP3596, called here amaD, is the fifth gene in an operon made up of seven open reading frames (ORFs) encoding PP3592 through PP3597. The dpkA amaC operon was transcribed divergently from the operon ORF3592 to ORF3597. Both promoters were mapped by primer extension analysis, which showed that the divergent -35 hexamers of these operon promoters were adjacent to each other. Transcription of both operons was induced in response to l- or d-lysine in the culture medium.

PMID:
17259313
[PubMed - indexed for MEDLINE]
PMCID:
PMC1855791
Free PMC Article

Images from this publication.See all images (3)Free text

FIG. 1.
FIG. 2.
FIG. 3.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk