Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2007 May;102(5):1945-52. Epub 2007 Jan 25.

Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles.

Author information

  • 1Dept. of Orthopaedics, University of Washington, Seattle, WA 98104-2499, USA. sundars@u.washington.edu

Abstract

We hypothesized that a 10-s rest interval (at zero load) inserted between each load cycle would increase the osteogenic effects of mechanical loading near previously identified thresholds for strain magnitude and cycle numbers. We tested our hypothesis by subjecting the right tibiae of female C57BL/6J mice (16 wk, n = 70) to exogenous mechanical loading within a peri-threshold physiological range of strain magnitudes and load cycle numbers using a noninvasive murine tibia loading device. Bone responses to mechanical loading were determined via dynamic histomorphometry. More specifically, we contrasted bone formation induced by cyclic vs. rest-inserted loading (10-s rest at zero load inserted between each load cycle) by first varying peak strains (1,000, 1,250, or 1,600 micro epsilon) at fixed cycle numbers (50 cycles/day, 3 days/wk for 3 wk) and then varying cycle numbers (10, 50, or 250 cycles/day) at a fixed strain magnitude (1,250 micro epsilon). Within the range of strain magnitudes tested, the slope of periosteal bone formation rate (p.BFR/BS) with increasing strain magnitudes was significantly increased by rest-inserted compared with cyclical loading. Within the range of load cycles tested, the slope of p.BFR/BS with increasing load cycles of rest-inserted loading was also significantly increased by rest-inserted compared with cyclical loading. In sum, the data of this study indicate that inserting a 10-s rest interval between each load cycle amplifies bone's response to mechanical loading, even within a peri-threshold range of strain magnitudes and cycle numbers.

PMID:
17255366
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk