Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2007 May;292(5):C1768-74. Epub 2007 Jan 24.

Mouse colon sensory neurons detect extracellular acidosis via TRPV1.

Author information

  • 1Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.


Extracellular acidification contributes to pain by activating or modulating nociceptor activity. To evaluate acidic signaling from the colon, we characterized acid-elicited currents in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglion (DRG) neurons identified by content of a fluorescent dye (DiI) previously injected into the colon wall. In 13% of unidentified LS DRG neurons (not labeled with DiI) and 69% of LS colon neurons labeled with DiI, protons activated a sustained current that was significantly and reversibly attenuated by the transient receptor potential vanilloid receptor 1 (TRPV1) antagonist capsazepine. In contrast, 63% of unidentified LS DRG neurons and 4% of LS colon neurons exhibited transient amiloride-sensitive acid-sensing ion channel (ASIC) currents. The peak current density of acid-elicited currents was significantly reduced in colon sensory neurons from TRPV1-null mice, supporting predominant expression of TRPV1 in LS colon sensory neurons, which was also confirmed immunohistochemically. Similar to LS colon DRG neurons, acid-elicited currents in TL colon DRG neurons were mediated predominantly by TRPV1. However, the pH producing half-activation of responses significantly differed between TL and LS colon DRG neurons. The properties of acid-elicited currents in colon DRG neurons suggest differential contributions of ASICs and TRPV1 to colon sensation and likely nociception.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk