Send to

Choose Destination
See comment in PubMed Commons below
BMC Neurosci. 2007 Jan 24;8:10.

Kv1.1 null mice have enlarged hippocampus and ventral cortex.

Author information

  • 1Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. <>



Mutations in the Shaker-like voltage-gated potassium channel Kv1.1 are known to cause episodic ataxia type 1 and temporal lobe epilepsy. Mice that express a malfunctional, truncated Kv1.1 (BALB/cByJ-Kv1.1mceph/mceph) show a markedly enlarged hippocampus and ventral cortex in adulthood.


To determine if mice lacking Kv1.1 also develop a brain enlargement similar to mceph/mceph, we transferred Kv1.1 null alleles to the BALB/cByJ background. Hippocampus and ventral cortex was then studied using in vivo 3D-magnetic resonance imaging and volume segmentation in adult Kv1.1 null mice, BALB/cByJ-Kv1.1mceph/mceph, BALB/cByJ-Kv1.1mceph/+, BALB.C3HeB -Kv1.1-/+ and wild type littermates. The Kv1.1 null brains had dramatically enlarged hippocampus and ventral cortex. Mice heterozygous for either the null allele or the mceph allele had normal-sized hippocampus and ventral cortex.


Total absence of Kv1.1 can induce excessive overgrowth of hippocampus and ventral cortex in mice with a BALB/cByJ background, while mice with one wild type Kv1.1 allele develop normal-sized brains.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk