Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Regul Pept. 2007 Mar 1;139(1-3):5-22. Epub 2006 Dec 16.

Lessons from the gastrin knockout mice.

Author information

  • Department of Clinical Biochemistry, KB3011, Rigshospitalet, University of Copenhagen, DK2100 Copenhagen, Denmark. lfh@rh.dk <lfh@rh.dk>

Abstract

The gastrointestinal hormone, gastrin, was discovered a century ago as the second hormone in history. Subsequently, gastrin peptides have been identified and the genes encoding the hormone as well as its receptor have been cloned in several mammalian species including the mouse. This has facilitated the development of gastrin and gastrin receptor deficient mice as models for genetic dissection of the role of gastrins in maintaining gastric homeostasis and control of acid secretion. The gastrin knockout mice are achlorhydric due to inactivation of the ECL and parietal cells. Moreover, this achlorhydria is associated with the development of intestinal metaplasia and bacterial overgrowth, which ultimately lead to development of gastric tumors. Outside the stomach, gastrin deficiency alters pancreatic islet physiology and is associated with a moderate fasting hypoglycemia in the fasting state. But lack of gastrin does not impair islet regeneration. The association between progastrin, progastrin-derived processing intermediates and colorectal carcinogenesis has also been examined through genetic or chemical cancer induction in several mouse models, although the clinical relevance of these studies still remains to be proven. While others have focused on models of increased gastrin production, the present review will describe the lessons learned from the gastrin deficient mice. These mice help understand how dysregulation of gastrin secretion may be implicated in human disease.

PMID:
17234279
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk