Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1342-7. Epub 2007 Jan 16.

Alterations of cellular bioenergetics in pulmonary artery endothelial cells.

Author information

  • 1Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA.

Abstract

Idiopathic pulmonary arterial hypertension (IPAH) is pathogenetically related to low levels of the vasodilator nitric oxide (NO). Because NO regulates cellular respiration and mitochondrial biogenesis, we hypothesized that abnormalities of bioenergetics may be present in IPAH. Evaluation of pulmonary artery endothelial cells from IPAH and control lungs in vitro revealed that oxygen consumption of IPAH cells was decreased, especially in state 3 respiration with substrates glutamate-malate or succinate, and this decrease paralleled reduction in Complex IV activity and IPAH cellular NO synthesis. IPAH pulmonary artery endothelial cells had decreased mitochondrial dehydrogenase activity and lowered mitochondrial numbers per cell and mitochondrial DNA content, all of which increased after exposure to NO donors. Although IPAH/pulmonary artery endothelial cells' ATP content was similar to control under normoxia, cellular ATP did not change significantly in IPAH cells under hypoxia, whereas ATP decreased 35% in control cells, identifying a greater dependence on cellular respiration for energy in control cells. Evidence that glucose metabolism was subserving the primary role for energy requirements of IPAH cells was provided by the approximately 3-fold greater glycolytic rate of IPAH cells. Positron emission tomography scan with [18F]fluoro-deoxy-D-glucose performed on IPAH patients and healthy controls revealed significantly higher uptake in IPAH lungs as compared with controls, confirming that the glycolytic rate was increased in vivo. Thus, there are substantial changes in bioenergetics of IPAH endothelial cells, which may have consequences for pulmonary hypertensive responses and potentially in development of novel imaging modalities for diagnosis and evaluation of treatment.

PMID:
17227868
[PubMed - indexed for MEDLINE]
PMCID:
PMC1783136
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk