Send to:

Choose Destination
See comment in PubMed Commons below
Biodegradation. 2007 Oct;18(5):607-16. Epub 2007 Jan 11.

Degradation of polycyclic aromatic hydrocarbons in soil by a two-step sequential treatment.

Author information

  • 1Department of Microbiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.


The objectives of this work were to isolate the microorganisms responsible for a previously observed degradation of polycyclic aromatic hydrocarbons (PAH) in soil and to test a method for cleaning a PAH-contaminated soil. An efficient PAH degrader was isolated from an agricultural soil and designated as Mycobacterium LP1. In liquid culture, it degraded phenanthrene (58%), pyrene (24%), anthracene (21%) and benzo(a)pyrene (10%) present in mixture (initial concentration 50 microg ml(-1) each) and phenanthrene (92%) and pyrene (94%) as sole carbon sources after 14 days of incubation at 30 degrees C. In soil, Mycobacterium LP1 mineralised (14)C-phenanthrene (45%) and (14)C-pyrene (65%) after 10 days. The good ability of this Mycobacterium was combined with the benzo(a)pyrene oxidation effect obtained by 1% w/w rapeseed oil in a sequential treatment of a PAH-spiked soil (total PAH concentration 200 mg kg(-1)). The first step was incubation with the bacterium for 12 days and the second step was the addition of the rapeseed oil after this time and a further incubation of 22 days. Phenanthrene (99%), pyrene (95%) and anthracene (99%) were mainly degraded in the first 12 days and a total of 85% of benzo(a)pyrene was transformed during the whole process. The feasibility of the method is discussed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk