Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Struct Biol. 2007 Jan 8;7:2.

A generalized analysis of hydrophobic and loop clusters within globular protein sequences.

Author information

  • 1Structural Biology Department, IMPMC, CNRS UMR7590, Universités Paris 6 & Paris 7, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France. richard.eudes@impmc.jussieu.fr <richard.eudes@impmc.jussieu.fr>

Abstract

BACKGROUND:

Hydrophobic Cluster Analysis (HCA) is an efficient way to compare highly divergent sequences through the implicit secondary structure information directly derived from hydrophobic clusters. However, its efficiency and application are currently limited by the need of user expertise. In order to help the analysis of HCA plots, we report here the structural preferences of hydrophobic cluster species, which are frequently encountered in globular domains of proteins. These species are characterized only by their hydrophobic/non-hydrophobic dichotomy. This analysis has been extended to loop-forming clusters, using an appropriate loop alphabet.

RESULTS:

The structural behavior of hydrophobic cluster species, which are typical of protein globular domains, was investigated within banks of experimental structures, considered at different levels of sequence redundancy. The 294 more frequent hydrophobic cluster species were analyzed with regard to their association with the different secondary structures (frequencies of association with secondary structures and secondary structure propensities). Hydrophobic cluster species are predominantly associated with regular secondary structures, and a large part (60 %) reveals preferences for alpha-helices or beta-strands. Moreover, the analysis of the hydrophobic cluster amino acid composition generally allows for finer prediction of the regular secondary structure associated with the considered cluster within a cluster species. We also investigated the behavior of loop forming clusters, using a "PGDNS" alphabet. These loop clusters do not overlap with hydrophobic clusters and are highly associated with coils. Finally, the structural information contained in the hydrophobic structural words, as deduced from experimental structures, was compared to the PSI-PRED predictions, revealing that beta-strands and especially alpha-helices are generally over-predicted within the limits of typical beta and alpha hydrophobic clusters.

CONCLUSION:

The dictionary of hydrophobic clusters described here can help the HCA user to interpret and compare the HCA plots of globular protein sequences, as well as provides an original fundamental insight into the structural bricks of protein folds. Moreover, the novel loop cluster analysis brings additional information for secondary structure prediction on the whole sequence through a generalized cluster analysis (GCA), and not only on regular secondary structures. Such information lays the foundations for developing a new and original tool for secondary structure prediction.

PMID:
17210072
[PubMed - indexed for MEDLINE]
PMCID:
PMC1774571
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk