Send to:

Choose Destination
See comment in PubMed Commons below
Pflugers Arch. 2007 Aug;454(5):749-58. Epub 2007 Jan 5.

Odor and pheromone detection in Drosophila melanogaster.

Author information

  • 1Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA.


Drosophila melanogaster has proven to be a useful model system to probe the mechanisms underlying the detection, discrimination, and perception of volatile odorants. The relatively small receptor repertoire of 62 odorant receptors makes the goal of understanding odor responses from the total receptor repertoire approachable in this system, and recent work has been directed toward this goal. In addition, new work not only sheds light but also raises more questions about the initial steps in odor perception in this system. Odorant receptor genes in Drosophila are predicted to encode seven transmembrane receptors, but surprising data suggest that these receptors may be inverted in the plasma membrane compared to classical G-protein coupled receptors. Finally, although some Drosophila odorant receptors are activated directly by odorant molecules, detection of a volatile pheromone, 11-cis vaccenyl acetate requires an extracellular adapter protein called LUSH for activation of pheromone sensitive neurons. Because pheromones are used by insects to trigger mating and other behaviors, these insights may herald new approaches to control behavior in pathogenic and agricultural pest insects.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk