Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2007 Jan 15;120(Pt 2):256-64. Epub 2007 Jan 2.

Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway.

Author information

  • 1Department of Cell and Molecular Biology/Microbiology, Göteborg University, S-405 30 Göteborg, Sweden.

Abstract

Toxic metals are ubiquitous in the environment and all organisms possess systems to evade toxicity and acquire tolerance. The Saccharomyces cerevisiae AP-1-like protein Yap8p (systematic name YPR199c; also known as Acr1p and Arr1p) confers arsenic tolerance by stimulating enhanced transcription of the arsenic-specific detoxification genes ACR2 and ACR3. Here, we report that Yap8p is regulated at the level of degradation. We show that Yap8p is stabilized in arsenite-exposed cells in a time- and dose-dependent manner. Yap8p degradation proceeds through the ubiquitin-proteasome pathway and is dependent on the ubiquitin-conjugating enzyme Ubc4p. Further, we show that mutants that are defective in the ubiquitin-proteasome pathway display increased Yap8p levels and elevated expression of the Yap8p gene-target ACR3. Yap8p forms homodimers in vivo but dimerization is not regulated by arsenite. Instead, arsenite-stimulated Yap8p stabilization and transcriptional activation of ACR3 requires critical cysteine residues within Yap8p. Collectively, our data is consistent with a model where Yap8p is degraded by the ubiquitin-proteasome pathway in untreated cells, whereas arsenite-exposure results in Yap8p stabilization and gene activation. In this way, regulated degradation contributes to Yap8p control.

PMID:
17200139
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk