Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2007 Feb 16;353(3):541-6. Epub 2006 Dec 22.

The role of nitric oxide in delta-aminolevulinic acid (ALA)-induced photosensitivity of cancerous cells.

Author information

  • 1Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.

Abstract

Application of delta-aminolevulinic acid (ALA) results in the endogenous accumulation of protoporphyrin IX and is a useful approach in the photodynamic therapy (PDT) of cancers. To investigate the role of nitric oxide (NO) in the specific accumulation of protoporphyrin and ALA-induced PDT of cancerous cells, we transfected inducible-nitric oxide synthase (NOS2) cDNA into human embryonic kidney (HEK) 293T cells and examined the ALA-induced photo-damage as well as the accumulation of porphyrin in the cells. When the NOS2-expressing HEK293T cells were treated with ALA and then exposed to visible light, they became more sensitive to the light with accumulating porphyrins, as compared with the ALA-treated control cells. An increase in the generation of NO in transfected cells led to the accumulation of protoporphyrin with a concomitant decrease of ferrochelatase, the final step enzyme of heme biosynthesis. When mouse macrophage-like RAW264.7 cells were cultured with lipopolysaccharide and interferon-gamma, the expression of NOS2 was induced. The addition of ALA to these cells led to the accumulation of protoporphyrin and cell death upon exposure to light. The treatment of cells with an NOS inhibitor, NG-monomethyl-L-arginine acetate, resulted in the inhibition of protoporphyrin accumulation and cell death. The levels of mitochondrial ferrochelatase and rotenone-sensitive NADH dehydrogenase in the NOS2-induced cells decreased. These results indicated that the generation of NO augments the ALA-induced accumulation of protoporphyrin IX and subsequent photo-damage in cancerous cells by decreasing the levels of mitochondrial iron-containing enzymes. Based on the fact that the production of NO in cancerous cells is elevated, NO in the cells is responsible for susceptibility with ALA-induced PDT.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk