Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Int J Dev Neurosci. 2007 Feb;25(1):23-8. Epub 2006 Dec 27.

Insulin-like growth factor-1 receptor immunoreactive cells are selectively maintained in the paraventricular hypothalamus of calorically restricted mice.

Author information

  • 1New York Medical College, Valhalla, NY, USA.

Abstract

The mammalian lifespan is dramatically extended by both caloric restriction (CR) and insulin-like growth factor-1 (IGF-1) suppression. Both interventions involve neuroendocrine alterations directed by the hypothalamus. Yet, it remains unclear whether CR exerts its affects by altering central IGF-1 sensitivity. With this question in mind, we investigated the influence of CR and normal aging on hypothalamic IGF-1 sensitivity, by measuring the changes in IGF-1 receptor (IGF-1R) populations. Taking IGF-1 receptor (IGF-1R) immunoreactivity as an index of sensitivity to IGF-1, we counted IGF-1R immunoreactive and non-immunoreactive cells in the paraventricular nucleus (PVN) of Young-ad libitum fed (Young-Al, 6 weeks old), Old-ad libitum fed (Old-Al, 22 months old), and old calorically restricted (Old-CR, 22 months old) female B6D2F1 mice. An automated imaging microscopy system (AIMS) was used to generate cell counts for each cross-section of PVN hypothalamus. Ad libitum fed mice show a 37% reduction in IGF-1R immunoreactive cells and a 12% reduction in the total cell population of the PVN with aging. In comparison, caloric-restricted mice show a 33% reduction in IGF-1R immunoreactive cells and a notable 24% decrease in the total cell population with aging. This selective maintenance of IGF-1R expressing cells coupled with the simultaneous loss of non-immunoreactive cells, results in a higher percentage of IGF-1R immunoreactive cells in the PVNs of CR mice. Thus, the decline in the percentage of IGF-1 sensitive cells in the PVN with age is attenuated by CR.

PMID:
17194562
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk