Format

Send to

Choose Destination
See comment in PubMed Commons below
Small. 2005 Jan;1(1):122-30.

Optical properties of nanoparticle-based metallodielectric inverse opals.

Author information

  • 1Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.

Abstract

Metallodielectric inverse opals were prepared by co-crystallizing silica-coated gold nanoparticles and polymer spheres, followed by removal of the crystal template. The inverse opals exhibit a distinct reflectance peak, which results from Bragg diffraction due to the highly ordered 3D macroporous structure. Photonic band-structure calculations indicate that the characteristic reflectance peaks observed are signatures of the directional gap at the L point. It is demonstrated that the optical properties (the position and magnitude of the electromagnetic bandgaps) of the gold-silica nanocomposite inverse opals can be engineered by varying the nanoparticle morphology (core size and shell thickness) and/or the nanoparticle volume-filling ratio of the composite. The use of metallodielectric nanoparticles to form inverse opals offers a versatile approach to prepare photonic materials that may exhibit absolute bandgaps.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk