Send to

Choose Destination
See comment in PubMed Commons below
J Histochem Cytochem. 2007 Apr;55(4):365-74. Epub 2006 Dec 22.

Expression profiles of mouse Kell, XK, and XPLAC mRNA.

Author information

  • 1The New York Blood Center, 310 East 67th Street, New York, NY 10021, USA.


Kell and XK are related because in red cells they exist as a disulfide-bonded complex. Kell is an endothelin-3-converting enzyme, and XK is predicted to be a transporter. Absence of XK, which is accompanied by reduced Kell on red cells, results in acanthocytosis and late-onset forms of central nervous system and neuromuscular abnormalities that characterize the McLeod syndrome. In this study, expression of mouse XK, XPLAC, a homolog of XK, and Kell were compared by in situ hybridization histochemistry (ISHH) and RT-PCR. ISHH showed that Kell and XK are coexpressed in erythroid tissues. ISHH detected XK, but not Kell, mRNA in testis, but RT-PCR indicated that both Kell and XK are coexpressed. XK, but not Kell, was significantly expressed in brain, spinal cord, small intestine, heart, stomach, bladder, and kidney. ISHH did not detect XK in skeletal muscle but RT-PCR did. In brain, XK was predominantly expressed in neuronal rather than in supportive cells. By contrast, XPLAC was predominantly expressed in the thymus. Coexpression of Kell and XK in erythroid tissues and the different expressions in non-erythroid tissues suggest that XK may have a complementary hematological function with Kell and a separate role in other tissues.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk