Send to

Choose Destination
See comment in PubMed Commons below
Plant Cell. 2006 Dec;18(12):3355-69. Epub 2006 Dec 22.

A family of microRNAs present in plants and animals.

Author information

  • 1Laboratory of Reproductive Development and Apomixis, Centro de Investigación y Estudios Avanzados, CP 36 500, Irapuato Guanajuato, Mexico.


Although many miRNAs are deeply conserved within each kingdom, none are known to be conserved between plants and animals. We identified Arabidopsis thaliana miR854 and miR855, two microRNAs (miRNAs) with multiple binding sites in the 3' untranslated region (3'UTR) of OLIGOURIDYLATE binding PROTEIN1b (At UBP1b), forming miRNA:mRNA interactions similar to those that cause translational repression/mRNA cleavage in animals. At UBP1b encodes a member of a heterogeneous nuclear RNA binding protein (hnRNP) family. The 3'UTR of At UBP1b is sufficient to repress reporter protein expression in tissues expressing miR854 or miR855 (rosette leaves and flowers, respectively) but not where both miRNAs are absent (cauline leaves). Intergenic regions containing sequences closely resembling miR854 are predicted to fold into stable miRNA precursors in animals, and members of the miR854 family are expressed in Caenorhabditis elegans, Mus musculus, and Homo sapiens, all with imperfect binding sites in the 3'UTR of genes encoding the T cell Intracellular Antigen-Related protein, an hnRNP of the UBP1 family. Potential binding sites for miR854 are absent from UBP1-like genes in fungi lacking the miRNA biogenetic machinery. Our results indicate that plants and animals share miRNAs of the miR854 family, suggesting a common origin of these miRNAs as regulators of basal transcriptional mechanisms.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk