Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2006 Dec 28;24(6):943-53.

Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element.

Author information

  • 1Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA.


Cellular RNAs are subject to quality-control pathways that insure the fidelity of gene expression. We previously identified a 79 nt element, the ENE, that is essential for the nuclear accumulation of a viral polyadenylated nuclear (PAN) RNA. Here, we show that intron-less polyadenylated transcripts such as PAN RNA and beta-globin cRNA exhibit two-component exponential decay kinetics in which some transcripts are rapidly degraded (t(1/2) = approximately 15 min) while others decay more slowly (t(1/2) = approximately 3 hr). Inclusion of the ENE protects such transcripts from rapid decay in a poly(A)-dependent fashion. The ENE inhibits deadenylation and decay in nuclear extract and prevents deadenylation of naked RNA by a purified deadenylase, likely through snoRNA-like intramolecular hybridization with the poly(A) tail. The ENE causes increased accumulation of splicing-defective beta-globin pre-mRNAs in vivo. We propose that the ENE-controlled rapid-decay mechanism for polyadenylated transcripts comprises a nuclear pre-mRNA surveillance system in mammalian cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk