Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Blood. 1991 Nov 1;78(9):2216-21.

Mast cell growth factor (c-kit ligand) supports the growth of human multipotential progenitor cells with a high replating potential.

Author information

  • 1Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202-5121.


The replating capability of human multipotential (colony-forming unit-granulocyte-erythrocyte-macrophage-megakaryocyte [CFU-GEMM]) and erythroid (burst-forming unit-erythroid [BFU-E]) progenitors was assessed in vitro as a potential measure of self-renewal using purified, recombinant (r) human (hu) or murine (mu) mast cell growth factor (MGF), a ligand for the c-kit proto-oncogene receptor. Primary cultures of human umbilical cord blood or adult human bone marrow cells were initiated in methylcellulose with erythropoietin (Epo) alone or in combination with rhu interleukin-3 (IL-3) or MGF. Individual day 14 to 18 CFU-GEMM or BFU-E colonies were removed from primary cultures and reseeded into secondary methylcellulose cultures containing a combination of Epo, MGF, and rhu granulocyte-macrophage colony-stimulating factor (GM-CSF). The data showed a high replating efficiency of cord blood and bone marrow CFU-GEMM in response to Epo + MGF in terms of the percentage of colonies that could be replated and the number of secondary colonies formed per replated primary colony. The average number of hematopoietic colonies and clusters apparent from replated cultures of cord blood or bone marrow CFU-GEMM stimulated by Epo + MGF was greater than with Epo + rhuIL-3 or Epo alone. Replated cord blood CFU-GEMM gave rise to CFU-GEMM, BFU-E, and GM colony-forming units (CFU-GM) in secondary cultures. Replated bone marrow CFU-GEMM gave rise mainly to CFU-GM in secondary cultures. A more limited capacity for replating of cord blood and bone marrow BFU-E was observed. These studies show that CFU-GEMM responding to MGF have an enhanced replating potential, which may be promoted by MGF. These studies also support the concept that MGF acts on more primitive progenitors than IL-3.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk