Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2006 Dec 20;1:e92.

Regulated polyploidy in halophilic archaea.

Author information

  • 1Goethe University, Institute for Molecular Biosciences, Frankfurt, Germany.

Abstract

Polyploidy is common in higher eukaryotes, especially in plants, but it is generally assumed that most prokaryotes contain a single copy of a circular chromosome and are therefore monoploid. We have used two independent methods to determine the genome copy number in halophilic archaea, 1) cell lysis in agarose blocks and Southern blot analysis, and 2) Real-Time quantitative PCR. Fast growing H. salinarum cells contain on average about 25 copies of the chromosome in exponential phase, and their ploidy is downregulated to 15 copies in early stationary phase. The chromosome copy number is identical in cultures with a twofold lower growth rate, in contrast to the results reported for several other prokaryotic species. Of three additional replicons of H. salinarum, two have a low copy number that is not growth-phase regulated, while one replicon even shows a higher degree of growth phase-dependent regulation than the main replicon. The genome copy number of H. volcanii is similarly high during exponential phase (on average 18 copies/cell), and it is also downregulated (to 10 copies) as the cells enter stationary phase. The variation of genome copy numbers in the population was addressed by fluorescence microscopy and by FACS analysis. These methods allowed us to verify the growth phase-dependent regulation of ploidy in H. salinarum, and they revealed that there is a wide variation in genome copy numbers in individual cells that is much larger in exponential than in stationary phase. Our results indicate that polyploidy might be more widespread in archaea (or even prokaryotes in general) than previously assumed. Moreover, the presence of so many genome copies in a prokaryote raises questions about the evolutionary significance of this strategy.

PMID:
17183724
[PubMed - indexed for MEDLINE]
PMCID:
PMC1762399
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk