Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2006 Dec 20;1:e102.

Strong HIV-1-specific T cell responses in HIV-1-exposed uninfected infants and neonates revealed after regulatory T cell removal.

Author information

  • 1Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America.

Abstract

BACKGROUND:

In utero transmission of HIV-1 occurs on average in only 3%-15% of HIV-1-exposed neonates born to mothers not on antiretroviral drug therapy. Thus, despite potential exposure, the majority of infants remain uninfected. Weak HIV-1-specific T-cell responses have been detected in children exposed to HIV-1, and potentially contribute to protection against infection. We, and others, have recently shown that the removal of CD4(+) CD25(+) T-regulatory (Treg) cells can reveal strong HIV-1 specific T-cell responses in some HIV-1 infected adults. Here, we hypothesized that Treg cells could suppress HIV-1-specific immune responses in young children.

METHODOLOGY/PRINCIPAL FINDINGS:

We studied two cohorts of children. The first group included HIV-1-exposed-uninfected (EU) as well as unexposed (UNEX) neonates. The second group comprised HIV-1-infected and HIV-1-EU children. We quantified the frequency of Treg cells, T-cell activation, and cell-mediated immune responses. We detected high levels of CD4(+) CD25(+) CD127(-) Treg cells and low levels of CD4(+) and CD8(+) T cell activation in the cord blood of the EU neonates. We observed HIV-1-specific T cell immune responses in all of the children exposed to the virus. These T-cell responses were not seen in the cord blood of control HIV-1 unexposed neonates. Moreover, the depletion of CD4(+) CD25(+) Treg cells from the cord blood of EU newborns strikingly augmented both CD4(+) and CD8(+) HIV-1-specific immune responses.

CONCLUSIONS/SIGNIFICANCE:

This study provides new evidence that EU infants can mount strong HIV-1-specific T cell responses, and that in utero CD4(+) CD25(+) T-regulatory cells may be contributing to the lack of vertical transmission by reducing T cell activation.

PMID:
17183635
[PubMed - indexed for MEDLINE]
PMCID:
PMC1762312
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk