Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2006 Dec 28;110(51):25916-25.

Characterization of Pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen.

Author information

  • 1INRS-Energie, Matériaux et Télécommunications, 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada, J3X 1S2.

Abstract

Multiwalled carbon nanotubes (MWCNTs) were grown on the fibers of a commercial porous carbon paper used as carbon-collecting electrodes in fuel cells. The tubes were then covered with Pt nanoparticles in order to test these gas diffusion electrodes (GDEs) for oxygen reduction in H2SO4 solution and in H2/O2 fuel cells. The Pt nanoparticles were characterized by cyclic voltammetry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The majority of the Pt particles are 3 nm in size with a mean size of 4.1 nm. They have an electrochemically active surface area of 60 m2/g Pt for Pt loadings of 0.1-0.45 mg Pt/cm2. Although the electroactive Pt surface area is larger for commercial electrodes of similar loadings, Pt/MWCNT electrodes largely outperform the commercial electrode for the oxygen reduction reaction in GDE experiments using H2SO4 at pH 1. On the other hand, when the same electrodes are used as the cathode in a H2/O2 fuel cell, they perform only slightly better than the commercial electrodes in the potential range going from approximately 0.9 to approximately 0.7 V and have a lower performance at lower voltages.

PMID:
17181240
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk