Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 2007 Feb 10;500(5):923-41.

Functional activation of glutamate ionotropic receptors in the developing mouse retina.

Author information

  • 1Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.

Abstract

Ionotropic glutamate receptors have been associated with early development of the visual process by regulating cell differentiation, cell motility, and synaptic contacts. We determined the expression of functional ionotropic glutamate receptors during development of the mouse retina by assessing 1-amino-4-guanidobutane (agmatine; AGB) immunolabelling after application of a range of glutamate analogs. Colocalization of AGB with calretinin and islet-1 allowed the identification of functional receptors in neurochemically defined neurons. Activation with kainate (KA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA) resulted in AGB entry into neurons consistent with that found previous receptor subunit localization studies in the developing retina. Temporal analysis revealed that application of 50 microM KA activated receptors as early as embryonic day 18 in the ventricular zone and in the ganglion cell layer, whereas 30 muM AMPA activated cells predominantly in the ganglion cell layer. Cholinergic amacrine cells showed functional KA and AMPA receptors upon their insertion into the conventional amacrine cell layer from postnatal day 1 (P1). OFF cone bipolar cells showed functional KA receptors from P6, at a developmental age when they are known to make contact with ganglion cells. NMDA activation led to diffuse AGB labeling at birth among cells in the ganglion cell layer, whereas, at P1, regularly spaced cholinergic amacrine cells in the conventional amacrine cell layer started to be responsive to NMDA. Non-NMDA receptors were first to show functional activation in the developing retina, and cholinergic amacrine cells displayed functional ionotropic glutamate receptors after reaching their final destination.

2006 Wiley-Liss, Inc.

PMID:
17177257
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk