Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2007 Mar 15;92(6):2212-22. Epub 2006 Dec 15.

Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy.

Author information

  • 1Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697-2715, USA.


Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth ( approximately 1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical properties (i.e., SHG and TPF) could be used to predict bulk mechanical properties of collagen hydrogels. We utilized polymerization temperature (4-37 degrees C) and glutaraldehyde to manipulate collagen hydrogel fiber diameter, space-filling properties, and cross-link density. Multiphoton microscopy and scanning electron microscopy reveal that as polymerization temperature decreases (37-4 degrees C) fiber diameter and pore size increase, whereas hydrogel storage modulus (G', from 23 +/- 3 Pa to 0.28 +/- 0.16 Pa, respectively, mean +/- SE) and mean SHG decrease (minimal change in TPF). In contrast, glutaraldehyde significantly increases the mean TPF signal (without impacting the SHG signal) and the storage modulus (16 +/- 3.5 Pa before to 138 +/- 40 Pa after cross-linking, mean +/- SD). We conclude that SHG and TPF can characterize differential microscopic features of the collagen hydrogel that are strongly correlated with bulk mechanical properties. Thus, optical imaging may be a useful noninvasive tool to assess tissue mechanics.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk