Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Curr Alzheimer Res. 2006 Dec;3(5):515-20.

Mitochondrial dysfunction and Alzheimer's disease.

Author information

  • 1Department of Neurology and Veteran Administration Medical Center, School of Medicine, Saint Louis University, St. Louis, MO 63106, USA.

Abstract

Mitochondrial dysfunction has been implicated in causing metabolic abnormalities in Alzheimer's disease (AD). The searches for mitochondrial DNA variants associated with AD susceptibility have generated conflicting results. The age-related accumulation of somatic mitochondrial DNA deletion has been suggested to play a pathogenic role in the development of AD. Recent studies have demonstrated that amyloid-beta peptide (Abeta) progressively accumulates in mitochndrial matrix, as demonstrated in both transgenic mice over-expressing mutant amyloid precursor protein (APP) and autopsy brain from AD patients. Abeta-mediated mitochondrial stress was evidenced by impaired oxygen consumption and decreased respiratory chain complexes III and IV activities in brains from AD patients and AD-type transgenic mouse model. Furthermore, our studies indicated that interaction of intramitochondrial Abeta with a mitochondrial enzyme, amyloid binding alcohol dehydrogenase (ABAD), inhibits its enzyme activity, enhances generation of reactive oxygen species (ROS), impairs energy metabolism, and exaggerates Abeta-induced spatial learning/memory deficits and neuropathological changes in transgenic AD-type mouse model. Interception of ABAD-Abeta interaction may be a potential therapeutic strategy for Alzheimer's disease.

PMID:
17168650
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Write to the Help Desk