Display Settings:

Format

Send to:

Choose Destination
Neurobiol Dis. 2007 Feb;25(2):331-41. Epub 2006 Dec 6.

Dorfin-CHIP chimeric proteins potently ubiquitylate and degrade familial ALS-related mutant SOD1 proteins and reduce their cellular toxicity.

Author information

  • 1Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8500, Japan.

Abstract

The ubiquitin-proteasome system (UPS) is involved in the pathogenetic mechanisms of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Dorfin is a ubiquitin ligase (E3) that degrades mutant SOD1 proteins, which are responsible for familial ALS. Although Dorfin has potential as an anti-ALS molecule, its life in cells is short. To improve its stability and enhance its E3 activity, we developed chimeric proteins containing the substrate-binding hydrophobic portion of Dorfin and the U-box domain of the carboxyl terminus of Hsc70-interacting protein (CHIP), which has strong E3 activity through the U-box domain. All the Dorfin-CHIP chimeric proteins were more stable in cells than was wild-type Dorfin (Dorfin(WT)). One of the Dorfin-CHIP chimeric proteins, Dorfin-CHIP(L), ubiquitylated mutant SOD1 more effectively than did Dorfin(WT) and CHIP in vivo, and degraded mutant SOD1 protein more rapidly than Dorfin(WT) does. Furthermore, Dorfin-CHIP(L) rescued neuronal cells from mutant SOD1-associated toxicity and reduced the aggresome formation induced by mutant SOD1 more effectively than did Dorfin(WT).

PMID:
17157513
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk