Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2007 Jan 1;42(1):106-17. Epub 2006 Sep 29.

Changes in disulfide bond content of proteins in a yeast strain lacking major sources of NADPH.

Author information

  • 1Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.

Abstract

A yeast mutant lacking the two major cytosolic sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1p) and NADP+-specific isocitrate dehydrogenase (Idp2p), has been demonstrated to lose viability when shifted to medium with acetate or oleate as the carbon source. This loss in viability was found to correlate with an accumulation of endogenous oxidative by-products of respiration and peroxisomal beta-oxidation. To assess effects on cellular protein of endogenous versus exogenous oxidative stress, a proteomics approach was used to compare disulfide bond-containing proteins in the idp2Deltazwf1Delta strain following shifts to acetate and oleate media with those in the parental strain following similar shifts to media containing hydrogen peroxide. Among prominent disulfide bond-containing proteins were several with known antioxidant functions. These and several other proteins were detected as multiple electrophoretic isoforms, with some isoforms containing disulfide bonds under all conditions and other isoforms exhibiting a redox-sensitive content of disulfide bonds, i.e., in the idp2Deltazwf1Delta strain and in the hydrogen peroxide-challenged parental strain. The disulfide bond content of some isoforms of these proteins was also elevated in the parental strain grown on glucose, possibly suggesting a redirection of NADPH reducing equivalents to support rapid growth. Further examination of protein carbonylation in the idp2Deltazwf1Delta strain shifted to oleate medium also led to identification of common and unique protein targets of endogenous oxidative stress.

PMID:
17157197
[PubMed - indexed for MEDLINE]
PMCID:
PMC1761109
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk