Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biorheology. 2006;43(6):721-8.

An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels.

Author information

  • 1Laboratoire TIMC-IMAG, Equipe DynaCell, CNRS UMR 5525, Institut de l'Ingénierie et de l'Information de Santé, Faculté de Médecine de Grenoble, 38706 La Tronche cedex, France.

Erratum in

  • Biorheology. 2007;44(2):139.

Abstract

Substrates with tunable mechanical properties are crucial for the study of cellular processes, and polyacrylamide gels (PAGs) are frequently used in this context. Several experimental techniques have been proposed to obtain the mechanical properties of PAGs. However, the range of the considered Poisson's ratio values remains quite large and no attempt has been made to propose an analytical relationship allowing the estimation of PAG Young's modulus when both bis-acrylamide and acrylamide concentrations are known. In order to complete the actual knowledge on the mechanical properties of PAGs, we took benefit of our original method based on the micropipette aspiration technique (Boudou et al., J. Biomech. 2006) for characterizing gels made with concentrations in the range 0.02% < or =[Bis]< or =0.20% and 3% < or =[Acry]< or =10%. We found that the PAGs Young's modulus varies nonlinearly with the acrylamide amount. Moreover, our study validates the quasi-incompressibility hypothesis usually made in studies using PAGs (mean Poisson's ratio of 0.480+/-0.012). More generally, and in agreement with data published by other groups, we propose an original nonlinear mathematical relationship allowing the computation of Young's modulus of PAG for any given acrylamide and bis-acrylamide amounts taken in the range of values we considered.

PMID:
17148855
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOS Press
    Loading ...
    Write to the Help Desk