High-yield production of authentic human growth hormone using a plant virus-based expression system

Plant Biotechnol J. 2005 Nov;3(6):613-20. doi: 10.1111/j.1467-7652.2005.00154.x.

Abstract

We describe here a high-yield transient expression system for the production of human growth hormone (hGH, or somatotropin) in transfected Nicotiana benthamiana leaves. The system is based on a recently described plant virus-based modular expression vector [Gleba, Y., Marillonnet, S. and Klimyuk, V. (2004) Engineering viral expression vectors for plants: the 'full virus' and the 'deconstructed virus' strategies. Curr. Opin. Plant Biol. 7, 182-188; Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V. and Gleba, Y. (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA, 101, 6852-6857], and represents a simple and fast alternative to stable transformation. By using various combinations of provector modules, hGH was produced in three compartments of the cell: the apoplast, the chloroplast and the cytosol. We found that targeting to the apoplast provided the highest amount of correctly processed and biologically active hGH, with a yield of up to 10% of total soluble protein or 1 mg per gram of fresh weight leaf biomass. These results indicate that the use of viral vectors for high-yield production of human therapeutic proteins in plants by transient expression provides an attractive alternative to production protocols using standard expression vectors in transgenic or transplastomic plants.